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AbstraCL The transmission Ulrough a hvo-dhensional (ZD) channel, which connects semi- 
infinite 2D electron gas reservoin and can be used as a mdel of both the few-atom-size 
(microscopic) and mesoscopic mntact is investigated under the assumption of the rem-field 
ballistic motion of electrons in the system. An analytical theory is advanced to a nearly exact 
analytical expression for the uansmission probability verified by numerical calculations for a vast 
vaiety of channel parameters. On these bases a detailed analytical and numerical analysis of sire 
eff . ts  in the quantum p in t  Contact (QE) transmission is performed with emphases put on basic 
distinctions between atomic-size and mesoscopic-size QPC. The QPC properties are visualized in 
calculations of tlansmission a&a Fermi energy dependences for some representative channel 
parametea. 

The results obtained an directly applicable to lhe description of coherent excitation energy 
uansfer in relevant molffiular m geometries. The suggested formalism wn be also used for an 
analytical analysis of some other problem of cunent dispute, in parficular, of non-linear field 
effects and 3~ QPC properties. 

1. Introduction 

Since the effect of the zero-voltage, low-temperature DC conductance quantization was 
discovered in split-gate configurations of the two-dimensional electron gas (2DEG) [ l ,  21, 
theoretical description of the ballistic electron transport through a channel (constriction), 
which connects two 2DEG reservoirs, has become a classic problem addressed by many 
authors [3-191. In the cited papers, the role of different factors (e.g. the size [4, 5, 131, 
geometry [5, 10, 13, 171, temperature [5, 131, impurities [ l l ,  141, electric and magnetic 
fields 13, 69 ,  12, 15, 16, 18, 191) in the conductance of the system often referred as a 
quantum point contact (QPC) has been investigated. 

It is usually assumed that a QPC can be viewed as a section of a continuous wire defined 
in terms of a certain potential profile for electrons in the contact region. Such a model 
implies the mesoscopic size of the QPC, which is the case of the split-gate experiments. 
Another situation arises in the STM or QPC spechoscopy experimental arrangements, where 
the contact size is varied at the atomic level [ZO]. It is essential therefore, to study the 
manifestation of size effects up to the case of few-atom contacts. Obviously, the continuous- 
wire QPC model is not appropriate for this purpose. 

One of the models which takes into account the discrete (atomic) structure of a real 
QPC is a 1s tight-binding model successfully used in a number of relevant studies of effects 
of impurities and wire width variation [21], geometry [22, 231, magnetic field [24, 251, 
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etc. Here, this model is used for description of transmission properties of wide-narrow- 
wide (ww) geometry with emphases put on distinctions in properties of atomic-size and 
mesoscopic-size contacts. 

Due to Landauer’s original work [26] electrical Qpc conductance can be related to 
the transmission probability through a Qpc between two temperature baths. Subsequently 
developed formalism (see [27-29] for references) has been successfully used in a great 
number of studies of the QPC transmission and conductance performed mostly by numerical 
methods. Only in very a few cases of not particularly realistic adiabatic potentials 
experienced by electrons in the QPC region can the transmission coefficient be found 
analytically. In general, this is a computational task because the transmission is essentially 
a multimode process. The case of strongly non-adiabatic WNW structure considered here is 
not an exception in this sense and much computational effort has been spent on its precise 
description, see for example [4, 131. Nevertheless, we have succeeded in the formulation 
of an analytical theory for the QPC transmission which being used for quantitative analysis 
has proven to be exact within few per cent. The derivation of corresponding relations 
and their application to description of size effects throw, as we believe, some extra light 
upon Qpc properties. In particular, the model used enables us to reveal basic distinctions 
and similarities between size effects in atomic-size and mesoscopic-size contacts and their 
dependence on QPC parameters. 

The QPC model is specified in section 2. Section 3 briefly summarizes the calculation 
method which yields an analytical expression for the transmission coefficient for both 
discrete and continuous models of the w structure. To make transparent the underlying 
physics and to simplify comparison with previous results, this expression is rederived in an 
equivalent form in appendix B, where WNW smcture is treated as two wide-narrow (WN) 
structures connected in series. In section 4, the derived relations are used for quantitative 
description of gross and fine (resonance) sbucmre of the QPC transmission spectrum. Some 
results of numerical calculations are also presented to facilitate understanding of specific 
properties of atomic-size contacts. Appendix A contains some relations for reference. 

L I Malysheva and A I On ipb  

2. Model statement 

The discrete QPC model is specified in figure 1. This is a hard-wall wide-narrow-wide 
configuration, which is shown by a solid line and supposed to be built up of onetevel 
atoms coupled by the electron resonant transfer interaction L between the nearest neighbours. 
Outside the structure the electron energy is infinite, and at the lattice sites it is set equal to 
zero. Then, in terms of the Fermi operators of the creation (a:) and annihilation (a,) of an 
electron at the lattice site with the coordinates r = (m, n), the heterostructure Hamiltonian 
takes the form 

e =  L a:a+ 
lr-?’l=a 

where a is the lattice constant, and the choice of the site numbering along them- and n-axis 
is shown in figure 1. 

In the next section we obtain the formal definition for the transmission coefficient, which 
is valid for an arbitrary width of wide and narrow parts of the structurt denoted by Af and 
N ,  respectively. But the main attention is paid here to the case Af + 00. Semi-infinite parts 
of the latter structure associate with the source and drain electron reservoirs characterized 
by a conductance band width of 81tl which is symmetric with respect to the zero electron 
energy. Such a QPC model, see figure 2(a), is attractive at least in two aspects. On one 
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Figure 1. Wide-mow-wide (WNW) geometry formed by a regular square lmce wilh the lattice 
constant a. The width of lhe wide and nmow p m  of the structure expressed in the lattice 
site number is denoted by N a n d  N. respectively; N' = i ( N  - N); the length of the channel 
between the wide p m  (resmoirs) is N,. Each laltice site is assumed to be occupied by a 
one-level atom coupled with the nearest neighbours via the electron resonant transfer interaction 
L. In the continuum limit, N -, m, Na = constant, the model is equivalent to a WNW structure 
(shown by solid line) with the parameters (N t ])a-reservoir width, w = (N + I)a+hannel 
width, 1 = (NI - 1)a-channel length. "he WNW swcture can be r e p d c d  as a compound 
device-a connection of two w i d e - m o w  (WN) structures shown in the inset. 

hand, it enables one to pass to the continuum limit, N + CO, aN = constant and, thereby, 
to the continuous-wire model of the QPC exploited by many authors in previous studies of 
the QPC conductance properties (references 13-19] are given to name few). The electron 
dynamics in this case is determined by the effective mass m* = h2/2La2. So, the model at 
hand does not pretend to reproduce correctly the full band shape of relevant semiconductor 
heterosmctures, but it does reproduce the bottom of the conductance band provided that 
the constant-effectivemass approximation works and under the appropriate choice of the 
L value. On the other hand. when N is finite, see figure 2(bHd), one deals with a finite- 
number-of-states contact between two conductors characterized by the infinite number of 
electron states (the typical situation in STM experiments). Thus, a unique possibility is 
presented to trace how an atom-size contact acquires properties of a continuous-wire contact. 

3. Calculation method 

3.1. General relations 

In the framework of the Landauer-Buttiker approach to the problem of the QPC conductance, 
see [27-291 and references therein, the main quantity to be calculated is the total through 
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1 w=a(N+1)  2DEa 

d 

Figure 2. Model of the quantum paint mntact (QK) between two semi-infinite ZDFG reservoirs 
used in this paper (a) and its particular realizations: one- and two-atom width contacts one (b), 
two {c), and arbitrary (d) number of atoms in length Regions inaccessible for electrons are 
shaded. The rem-field transmission of contacts @Hd) is exactly described by equation (7). 

channel transmission coefficient. By definition, it is 

where kjs and kJd are the wave vectors of incident and transmittcd electrons, js(d) denotes 
the highest propagating mode in the source (drain) reservoir, and %+ the transmitted wave 
amplitudes, which are to be found from the stationary Schrodinger equation with scattering- 
type boundary conditions. 

For the model at hand, instead of solving the corresponding set of equations, which 
connect q! K. with the amplitudes of the incident (given) and reflected waves, it is more 
convenient to operate with the electron wave function inside the channel, precisely, with 
its jth-mode amplitudes on the entrance (n = 1) and exit (n = NI) sites of the channel. 
Denoting the appropriate quantities by Xi and Xi,, and omitting lengthy but elementary 
intermediate calculations, we write only the resulting equations in the form 

Id 
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Here, E is the electron energy (in units 2L), eV is the difference in the site energies 
between the entrance and exit of the channel, which arises due to the voltage drop V. The 
quantities 

and 

%(Ajj,) + i5(Ajjr) (A!,(E) = Ajjr(E - e V ) )  JJ 

appear in (2). (3) because of the non-orthogonality of source (drain) and channel basis wave 
functions which describe the transverse electron motion. Equations (2) and (3) also include 
one-dimensional Green functions in combinations 

(4) 
G!JE,  v) 

6L,",(E, V )  = 2 
G:,,(E, UG&, ,~ ,W,  v) - (@~JE, v)) 

where the matrix elements Gh,,,(E, V) obey the equation 

(5) 
written under assumption of linear voltage drop along the channel. 

In terms of solutions to the set (2). (3). the definition (1) can be rewritten as 
N 

T-(E, v) = 4 LX(A~~,)R(A;~)X&X~;. (6)  

Equations (2)-(6) determine (in the channel wave functions basis) the through channel 
transmission as a function of electron energy, the bias, channel parameters, and the width 
of wide parts of the WNW structure. As is shown below, the calculation scheme presented 
is to some extent similar to that used by Szafer and Stone [5] but has wider applications. 
In particular, it is equally applicable to the description of QPC properties at the atomic and 
mesoscopic levels; it includes the case of biased channels; and finally, despite finding T is, 
in general, a computational problem, the derived equations suggest an analytical expression 
for the transmission coefficient proved to be remarkably accurate. The latter is the most 
significant advantage of the present approach in comparison with numerous computational 
studies of similar Qpc  models. 

j.j'=l 

3.2. Diagonal approximation 

In what follows, we restrict ourselves to consideration the case of infinitely large reservoir 
width, (i.e., to the QPC models shown in figure 2) and zero bias eV = 0. The zero-field 
transmission coefficient taken at the Fermi energy EF determines the linear-response zero- 
temperature  pc conductance [27-291. 
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Using explicit expressions for matrix elements Aj7 (see appendix A), it is easy to show 
that Aj j  < Ai? for E," ,< Ep = 2 - E < E,!+], where E," stands for the opening energy 
of the jth-channel mode. This property (first noted by Szafer and Stone [SI) justifies the 
approximation Aj,, = Sj? Aj j  in (2), (3), and (6)  and straightforwardly leads to the following 
expression for the transmission coefficient 

TwNw(E. 0) = TdNW 
j=1 

where Aj j  and tilded Green functions for an unbiased channel are defined in equations (AZ), 
(A3) and (A5), respectively. 

Note that for one- and two-atom width channels (see models (b)-(d) in figure 2) 
definition (7) is exact. In the case of arbitrary N, deviations in the energy dependence 
(7) from the exact values of T w w  do not exceed a few per cent. This was verified by 
comparison of (7) with exact calculations for a vast variety of channel parameters. 

It is worth emphasizing that we deal here with an exweme case of a 'non-adiabatic' QPC 
model, where mixing of channel and reservoir modes (a priori absent in adiabatic models) is 
strong. This mode-mixing effect, which results in electron wave reflection from channel ends 
and gives rise to the resonance structure of the transmission spectrum (discussed below), 
is mainly included by passing from (I) to the transmission description in the channel wave 
function basis (7). Therefore (and because of the weakness of channel mode mixing), it 
is not surprising that TWNW determined in the diagonal approximation gives a practically 
exact description of essentially multireservoir mode transmission. 

To bridge the present and previous results, most of which have been obtained for the 
continuous QPC model, it is helpful to rewrite (7) in the effective mass approximation. For 
this, we set L = -fi2/(2m'nz), where the electron effective mass m* is positive. It is 
also convenient to introduce the quantity akm = r / ( N  + 1) which has the meaning of the 
propagation threshold wave vector in a channel of the width w = (N + I)n, and to use 
the propagation threshold energy &h = h2rr2/(2m'w2) as the energy unites. Using these 
notations in equation (7), which is taken in the limit N + CO, Na = constant, we get 

lim TWNW (EF) = T&w(&F) 
okh-0 

4q%R2(Ajj)/ sin2(nqil/w) 

I(qj cot(zqjl/w) - iA;;) - qj/sinz(nqjl/w) 
=e  (8) 

(2 
2 

where EF = 2Ep/(aZk$) = qf + j 2  denotes the dimensionless energy in units &b (as 
distinct from EF measured here in ZILI), I = (NI - I)a is the length of the channel, 
and A;j denotes an analogue of the matrix element Ajj  in the continuum limit, A;j = 
Sjy lim,k,-ro(ak~)-'Ajy, see (A4). 

The above equation is similar but not identical to the definition of T&,, obtained by 
Szafer and Stone [5]. This similarity becomes obvious for an equivalent representation 
of (8) in terms of characteristics of the WN structure shown in figure 1, namely, the j t h -  
mode transmission and reflection coefficients TLN and R L ,  and the phase shift acquired by 
the jth-mode wave reflected from the WN discontinuity. The derivation of corresponding 
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expressions, which bring to light the physics underlying the jth-mode WNW transmission 
T&Nw, is given in appendix B. 

4. Results and discussion 

4.1. Gross structure of the transmission spectrum 

Here, we have a look at the ~ N W  structure as a compound system, see figure 1: two WN 
structures connected by a wire segment (characteristics of the WN shucture which enter 
the definition of T,&, are discussed in appendix B). In figure 3, the energy dependence 
T&(EF) is shown for j = 1, 2, 3, 4, 5 (N = 5, N = 00): curves (a) correspond to 
NI = 1, and (b) to NI = 7. The observations summarized below are independent of the 
choice of the parameters N and NI. 

First we note that as seen from the symmem relations (B8) the partial jth-mode 
transmission possesses the following property: T&,,,(E < 0) = T{&-j(lEl), which 
provides the parity of the total transmission. Therefole, similarly to Tww(EF) we can 
restrict the presentation of the energy dependence of T’ to the interval EF E [O, 21. 

In accordance with (B7), ThN = 0 at the energy of the jth-mode opening E,”. However, 
at this point TdNw(E:) # 0. For the given N, T&(E,”) has the maximum value in the 

This value decreases very rapidly 
with the increase of the parameter (NI - 1)/(N + 1) because of the suppression of the 
through channel tunnelling with the increase of the length-to-width ratio. 

Above E,’. TkMU is close to unity in most of the jth-mode energy interval, where 

channel with NI = 1, T& = @ ( A j j ) /  IAjjl 2 

This is true even in the shortest possible channel, NI = 1, see figure 3(a). Note that 
due to the suppression of tunnelling and the interference effects, the increase of ThNw is 
steeper in  channels with larger length-to-width ratio (compare curves (a) and (b) in figure 
3). The latter parameter also determines the resonance structure seen in figure 3b. When 
this structure appears, T$$$) plays the role of an enveloping function which describes the 
energy dependence of the transmission minima within the j th  plateau. 

For energies below E,”. where ThN + R&, # 1 ,  only the evanescent modes contribute 
to T A .  This contribution is suppressed very rapidly with the decrease of the electron 
energy. When EF approaches E,”-,, T&(EF) becomes nearly zero, because T&, goes to 
zero, see appendix B. 

Thus, due to the specific energy dependence of the partial transmission T&, 
which, in due course, is determined by transport characteristics of the WN structure, the 
energy dependence of the total zero-field transmission coefficient T m  is very accurately 
reproduced by the following simple formula 

TWNW(EF E [ET. E,”+]]) = j - 1 + T&.,,+, + T&. (10) 

Since j is arbitrary, equation (IO) completely determines the dependence Tww(EF). If 
applied to the extended channels, (NI - 1)/(N + I )  2 1, the last term in this equation can 
be omitted. In the latter case, the structure of the formula for T w  is similar to (B12) for 
TWN. 
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E? 

b 

5 

m 
2.0 

Figure 3. The jlh-mode p a h l  transmissions Ti- as a function of the Fermi energy 
EF = 2 - E/2ILI in units 21LI calculated for lhe five-atom width channel (j = 1-5) with 
NI = I (a) and 7 @) atoms in length. 

4.2. Fine resonance structure 

As it was demonstrated by calculations of Kirczenow [4], Szafer and Stone [5 ] ,  and other 
authors, the model under consideration predicts the appearance of resonances in the through 
QPC transmission dependence on the electron energy. So far, the resonance structure of 
the QPC transmission specmm has been discussed on computational or phenomenological 
grounds. However, the main regularities of this structure can be easily explained using 
the analytical expression for the transmission coefficient @6) (discrete model) or (B9) 
(continuous one) obtained in appendix B. Since the resonance structure is described in a 
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similar manner for both models in focus, we consider only the case of the continuous 
channel. 

As mentioned above, the resonance structure of T&,,,(cF) originates from the 
interference of electron waves reflected from the channel edges. According to equations 
(IO), (B9). the position and the number of resonance8 in the jth plateau of the dependence of 
T& on Fermi energy is determined by the solutions qp),  n = 0, 1 ,  2, ..., to the equation 

1 
-qj + z-'@;(qj) = n n = 0, 1 ,  2, ... (11) 

in the energy interval j' < E F  < ( j  + I)*, i.e. for q, E LO, q, e(-) I, q,C(-) = m. The 
left-hand side of (11) represents the change in the phase of the Fermi electrons with the 
de Broglie wavelength hi  = 2z(q,k&': the first term corresponds to the phase acquired 
as a result of the electron wave propagation at the distance I ;  the second is due to a single 
reflection from the channel edge. Just the latter term, which accounts for the reflection 'non- 
elasticity', makes (1 1) different from the standard condition of the interference resonances 
n&2 = 1.  

The phase @; defined in @IO) as a function of qj/q;(-) varies very little with j. 
In particular, @;(q;(")) c -x/Z. Thus, the critical (minimal) length-to-width ratio of the 
channel, at which the first resonance appears in the jth plateau of the dependence T s N W ( & ~ ) ,  
can be written as 

W 

and the total number of resonances within the jtb plateau as 

The strength of the interference resonances described by ( l lH13)  depends on their 
position. In the other words, not all n; resonances in the jth plateau predicted by (11) will 
be observed equally well. The explanation of this effect is as follows. As seen from (B9). 
for all resonances within the j th  plateau, the transmission coefficient has the same maximal 
value. By conmt ,  the values of T& at minima depend on the minimum position. This 
dependence (and thus the resonance strength) is completely determined by the enveloping 
function TwMu = (1 - RZN)'/( 1 + RL)' similar to that introduced in (9). Evidently, the 
decrease of the resonance strength follows the dependence 1 - T s )  = 4RZN/( 1 + Rk)' 
on A' = J5 - j E [O, I]. Since the jth-mode wave reflection in the channel falls nearly 
to zero (roughly speaking, halfway towards the next mode opening), the resonance peaks 
are also observed only in the first half of plateaus. Therefore, there is no one-to-one 
correspondence between the number of peaks really ObServed in the j th  the plateau of the 
dependence T h ( , J ' @  and the total number of resonances nJ determined by equation (13). 

4.3. Numerical results 

Here, we present the results of exact calculations for the zero-field through QPC transmission 
coefficient to provide a visual quantitative picture of the size effects on the transmission of 
a 2D channel which connects two semi-infinite ZDEG reservoirs. 

In figure 4(a) and 4(b) we grouped dependences T i ( & )  with the fixed length-to- 
width ratio (NI - I ) / ( N +  1) = 1 and 3, respectively. Each ratio value is represented by three 
curves with the different width and length of the channel. The length N, - 1 = 6, 12, IS 

SI(-) 
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FIgure 4. Zerofield lotal transmission mefficient T w w  vmus lhe Fermi ene%y. CUNS 
(a), (b), mrrespond to constant values of the length-tc-width ratio (NI - 1) / (N + 1) = I ,  3, 
rerpectively. Crimes ( c )  to constant values of the c h e l  length NI = 7. Each c w e  in floups 
(a), (b) is labelled by values of Lhc channel length (NI) and width ( N ) .  and in gmup (6) by 
values of N. Cums (d) represent T-($@) for NI = 19, N = 5,  II,35 shown by solid 
lines, and T & ( a  for l l w  = 3. 1.5, 0.5 (upper. middle, and lower cwcs.  respectively) by 
dashed tines. 
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Figure 4. Continued 

appears in both groups, to make apparent the transmission dependence on the channel width 
at the fixed length. This same dependence is illustrated in figure 4(c), by the presentation of 
five curves calculated for NI = 7, and N + 1 = 2,3,4,6, and 12. Thus, curves (aHc)  in 
figure 4 display the most characteristic size effects predicted by the discrete QPC model. For 
comparison with its continuous analogue, the QF'C transmission for NI = 19 and N = 5, 11, 
and 35 is plotted in figure 4(d) versus e (+ f i  in the continuum limit) together 
with the corresponding dependences T;UNW(&~). The latter illustration makes visible how a 
contact built of atoms acquires properties of a continuous-wire contact. Curves of figure 4 
are used below in discussion of basic distinctions between the discrete and continuous QPC 
models. 

In accordance with its definition, the transmission of the discrete channel is always 
restricted in magnitude. This limitation is due to the finite number of states available for 
electrons arriving from the source (drain) reservoir to the channel entrance (exit). In the 
given model of one-level atoms, the maximal value of the total transmission coefficient 
equals the channel width in the number of atoms. The maximal transmission is attained 
when all states of the transverse quantization in the channel are occupied, i.e., when the 
electron energy is in the vicinity of the middle of the conductance band. With the further 
increase of EF. the propagating modes close one by one. The decrease in the number of 
channel states available for electrons results in descending staircases which represent TWMV 
against EF dependences shown in figure 4(aW(c). The overall tendency in the transmission 
to decrease for energies EF > 2 is caused by the decrease of the electron group velocity, 
when the electron energy goes to the top of the conductance band. In this sense, the 
existence of the maximum in the gross structure of the transmission dependence versus the 
Fermi energy represents a general QPC property, if one takes into account the finiteness of 
the conductance band width. 

As is known, in the continuous model, the transmission depends only on &F-the Fermi 
energy-in units of EF and the length-to-width ratio in the channel. It means that for 
Z/w = constant, T&.,,,, varies identically with changes of the Fermi energy at the fixed 
channel width and, vice versu, with changes of w at fixed .s&,. As a result, an integer-fold 
increase in w is responded, to within an accuracy of unity, by the same increase in T&,, 
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see figure 4(d). In other words, the continuous channel transmission with the same accuracy 
obeys the law T h ( w ) / T & ( w ’ )  = w/w’ .  By contrast, curves in figure 4@) show that 
contacts of few atoms in width are quite far from following the regularity just mentioned. 
Let us compare, for example, curves N = 1, N I  = 7 with N = 3, N I  = 13 (twofold 
increase in N + 1) and with N = 5, N I  = 19 (threefold increase in N + 1). It is seen 
that the twofold and threetimes increase in the width may result in twofold, threefold, and 
threefold to five-times increase in the transmission, respectively (again, we refer here to the 
idealized square-comer-shaped plateaus in the transmission, i.e. the resonance structure is 
not taken into account). 

Probably the most striking result is that some plateaus in transmission against Fermi 
energy dependences, which describe channels of different width, are overlapped. As seen 
from figure 4(d). there exists an energy interval, where the transmission coefficient for 
contacts with three, four (not shown), and five atoms in width is the same (disregarding the 
resonance structure of the plateaus). This result is in sharp contradiction with predictions of 
the continuous model. However, for high-lying plateaus @ut well below the middle of the 
conductance band) the difference between Tww(N)/Tm(N’)  and T&(w)/T&,,,(w’) 
is small for N ,  N’ > 10 and diminishes very rapidly with the increase of j. 

L I Maiysheva and A I Onipko 

5. Conclusion 

Two equivalent analytical expressions for the transmission probability through a rectangular 
constriction in a 2DEG are derived. One (presented in section 2) is based on the Green 
function method and thus, it is flexible for adjusting to more complex QPC models. The 
other (described in appendix B) is obtained by using an original version of the transfer matrix 
method [30]. The latter has proven to be transparent physically and was used therefore for 
quantitative analytical analysis of the QPC transmission spectrum. Another reason for its 
inclusion is that a similar, but not equivalent, definition of T& as given in (B9). has 
been derived by Szafer and Stone [5]  but, unfortunately, the corresponding expression is 
presented in the original paper with misleading misprints. 

The above-derived relations give a precise description of the QPC transmission spectrum, 
which is much better than that given by the mean-field approximation suggested in [5 ] .  In 
particular, they predict the number and position of resonances which in previous works 
could be unambiguously determined only in rather lengthy computations. 

Thus, the suggested method is highly efficient for quick and reliable analysis of 
size effects in transmission (and conductance) of non-adiabatic contacts. Some nearest 
perspectives of its applications are worth mentioning. 

It is straightforwardly applicable to analysis of high-field non-linear effects modelled 
by biased electron potential energy inside the contact and (or) the presence of the potential 
difference between the contact ends. Standard methods (say, matching technique) demand 
using supercomputers in this case and are inefficient for studying fine effects such as 
additional conductance quantization recently observed in high fields [31]. 

The generalization of the present method to the case of the 3D system will give a 
tractable model of atomic-size contacts realized in STM experiments. 

Finally, this method can be directly used for the description of coherent excitation energy 
transfer effects in molecular layers with the given and other restricted geometries, which 
can serve as prototypes of optoelectronic devices. 
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Appendix A 

Here, we present for reference explicit expressions for matrix elements Ajj, in the case of 
N = CO and tilded Green functions 61.1 and 6,, ,~,  in an unbiased channel, which complete 
the definition of the transmission coefficient given in equation (7). 

By passing in 

from the summation over reservoir modes to integration, one easily gets 

2sin(nj/(N + l))sin(zj'/(N + 1)) 
x (N  + 1) 

W(Ajjr) = 

sin2 ([(N + 1)/21x) 

cosZ([(N + l)/21x) 

even j, j' 

odd j. j r  
- ,/1 - (E/2L - C O S X ) ~  

(cosx - cos[nj/(N + I)])(cosx - cos[nj'/(N + 1)l) 
0 

2sin(zj/(N + 1)) sin(zj'/(N + I)) 
S(Aj7) = 

n(N + 1) 
sin' ([(N + I)/ZIX) even j. j' 

J ( E / Z L  - COSX)* - 1 
cos2 (I(N + 1)/2lx) odd j, j' 

(cosx - cos[nj/(N + l)])(cosx - cos[nj'/(N -!- 1)1) 
5 

where P = COS-~(E/ZL - l), E 2 0. For E c 0 

Ajy(E c 0) = A*,+1-jNfl-j,(lEI). (A3) 

In the continuum limit, the corresponding matrix elements Ajj = liiohb+dakd-lAjj, 
B(Ajy) + i3(A;y) take the form 

even j ,  j' 

odd j ,  j' 
even j .  j' 

odd j ,  j'. 
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The solution of equation (5) for V = 0 gives 

where kj is defined by the equation coskj = E / 2 L  - cos[xj/(N + l)], 

Appendix B 

In terms of solutions of the scattering problem for a wide-narrow structure, the total zero- 
field transmission coefficient for a constriction as shown in figure 1 takes the form [31] 

N 

T w w  = T& (B1) 
j=1 

where (compare with (6)) 

In (Bl), (B2), the indices j ,  j 1 ,  j z  refer to the modes of the narrow part, whereas js  refers to 
the wide part of the WN structure, respectively; j3 is the diagonal operator with the matrix 
elements Ejjv = Sjjt exp[ikj(Nl - I)]; the mahix element iy = ,/(sinkj/sinkj,)ry of the 
operator FWN is the probability amplitude of the j‘th-to-jth-mode reflection in the narrow 
part of  the structure, and = ,/(sinkj/sinkj&Y represents the probability amplitude 
of the transmission into the jth-mode wave in the narrow part of the WN structure from the 
j,th-mode wave in the wide part. 

The quantities z,? and ry obey the following equations 

where the values of the complex wave vector kj”,) 

k!. l(b) = O  k!”,) > 0 EF E [O, E,? 

k ,  , -kk’ - j(i,) + iky”,) = 0 < < n k“ .  J h )  - - 0  EF E [E;, E;’] (B4) i k!. I U S )  =IT k;!O,) > 0 EF E [E,?, 41 

are determined by the energy conservation law E / 2 L  = coskj + cos[nj / (N+ I)] = 
coskj, +cos[njs / (hl+ 111. 

In equation (B4), EF = 2- E / 2 L  ( E F  E [O. 41). and the notation E,” = 1 - cos(ak* j) 
(E: = 3 - cos(ak6j)) denotes the energy of the opening (closing) of the jth-mode in units 
2L. In the continuum limit, the set (B3) coincides with that used by Szafer and Stone [5]. 
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In the diagonal approximation (AIj, = ajYAjj), we have from (B3) 

Using these expressions in (32 ) ,  one finds (also in DA) 

where ‘pj is defined in (BS). and 

The quantities which enter the expression for the partial transmission Ti,, are the jth- 
mode transmission (ITiNI) and reflection (RLN) probabilities, and the phase of the reflection 
amplitude ( (o j )  in the WN structure. (The term ‘probability’ is appropriate only fmenergies 
EF E [E?, E;’]. Outside the jth-subband energy interval, the quantities IT$NI, RLN, and 
(oj do not have a particular physical meaning.) Note that taking into account equation (B4) 
and the symmetry properties of matrix A, see (A3). it is easy to prove that 

IT$,(E < o)i = IT:N+’-~(IEI)I R&,(E -= 0) = R:~’-~(IEI) 
(B8) 

‘pj(E < 0) = -pNtI-j(\EI). 

The latter relations significantly reduce the number of calculations. 

of expression (7). 

takes the form 

It is easy to verify that equation (Bl) with T$Nw defined in (B6) is just another form 

In the continuum limit, the transmission coefficient found in the diagonal approximation 

where 

and real and imaginary parts of AJj are defined in (A4). 
Let us briefly discuss the characteristics - of the WN structure appearing in (B6) and also 

of the total WN transmission, TwN = E:=, T A .  For this, it is helpful to write separately 
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the definitions of IT&/, RL,, and pj for imaginary and real values of kj. Precisely, 

IT&.,[ = RLN = 

L I Malysheva and A I Onipko 

2 
4sinhk;’%(Ajj) 
lAjj + isinhk;12 

%‘(A,) + (3(Ajj)  - sinhk;’) 

IAjj + isinhk/l2 IBlla) 
2 sinhky %(Ajj) 
IAjj12 - sinh’k;’ 

tanpj = sinhk; = + cos(ak6j) - z ) ~  - 1 

As seen from (Bll), IT&N[ = 0 at EF = 0, E;, E;’. and 4. In the most of the interval 
EF E [E;, E,’], where T&., f R&, = 1, this function is very close to unity. The latter 
equality does not hold outside the jth subband, i.e. for EF E [O, E;] and EF E [E;’, 41. 
In these energy intervals, TkN is a non-monotonic function with the maxima below (and 
close to) Ej” and, similarly, above E:. The function RkN monotonically decreases from 
the value of unity, when the energy moves from E,? (E;‘) towards zero (four). 

From the character of the IT&,I dependences it follows that the total w transmission 
as a function of energy has the form of a staircase with slightly rounded steps. Analytically, 
this dependence is well described by ( j  is arbitrary) 

(B12) 

It is noteworthy that first, the maximum of T i N ( &  E [EYE;+!]) deviates very little from 
unity, and second, this deviation is not changed significantly with the plateau number j in 
the dependence TWN(€.D). 

Thus, the transmission quantization in a WN structure is nearly as perfect as the 
conductance quantization in an ideal infinite wire. The perturbation of the quantization 
effect in the w structure is due to the reflection of electron waves at the wide-nmow 
discontinuity. In the w w  configuration, two new effects come into play: through channel 
(constriction) tunnelling, and interference of electron waves reflected from the channel edges. 
The role of these effects in determining the through channel transmission is discussed in 
section 4. 

TWN(EF E [E;E;+,I) = j - 1 + 7‘’. 
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